pyFM.signatures.HKS_functions¶
Functions
|
Returns the Heat Kernel Signature for num_T different values. |
|
Compute HKS with an automatic choice of tile values |
|
Returns the Heat Kernel Signature for some landmarks and time values. |
|
Compute the Heat Kernel Signature for a mesh |
- pyFM.signatures.HKS_functions.HKS(evals, evects, time_list, scaled=False)¶
Returns the Heat Kernel Signature for num_T different values. The values of the time are interpolated in logscale between the limits given in the HKS paper. These limits only depends on the eigenvalues.
- Parameters:
evals – (K,) array of the K eigenvalues
evecs – (N,K) array with the K eigenvectors
time_list – (num_T,) Time values to use
scaled – (bool) whether to scale for each time value
- Returns:
HKS – (N,num_T) array where each line is the HKS for a given t
- Return type:
np.ndarray
- pyFM.signatures.HKS_functions.lm_HKS(evals, evects, landmarks, time_list, scaled=False)¶
Returns the Heat Kernel Signature for some landmarks and time values.
- Parameters:
evects – (N,K) array with the K eigenvectors of the Laplace Beltrami operator
evals – (K,) array of the K corresponding eigenvalues
landmarks – (p,) indices of landmarks to compute
time_list – (num_T,) values of t to use
- Returns:
landmarks_HKS – (N,num_E*p) array where each column is the HKS for a given t for some landmark
- Return type:
np.ndarray
- pyFM.signatures.HKS_functions.auto_HKS(evals, evects, num_T, landmarks=None, scaled=True)¶
Compute HKS with an automatic choice of tile values
- Parameters:
evals – (K,) array of K eigenvalues
evects – (N,K) array with K eigenvectors
landmarks – (p,) if not None, indices of landmarks to compute.
num_T – (int) number values of t to use
- Returns:
HKS or lm_HKS –
- (N,num_E) or (N,p*num_E) array where each column is the WKS for a given e
for some landmark
- Return type:
np.ndarray
- pyFM.signatures.HKS_functions.mesh_HKS(mesh, num_T, landmarks=None, k=None)¶
Compute the Heat Kernel Signature for a mesh
- Parameters:
mesh (TriMesh) – mesh on which to compute the HKS
num_T (int) – number of time values to use
landmarks (np.ndarray, optional) – (p,) indices of landmarks to use
k (int, optional) – number of eigenvalues to use
- Returns:
HKS – (N,num_T) array where each line is the HKS for a given t
- Return type:
np.ndarray