pyFM.signatures.WKS_functions¶
Functions
|
Returns the Wave Kernel Signature for some energy values. |
|
Compute WKS with an automatic choice of scale and energy |
|
Returns the Wave Kernel Signature for some landmarks and energy values. |
|
Compute the Wave Kernel Signature for a mesh |
- pyFM.signatures.WKS_functions.WKS(evals, evects, energy_list, sigma, scaled=False)¶
Returns the Wave Kernel Signature for some energy values.
- Parameters:
evects – (N,K) array with the K eigenvectors of the Laplace Beltrami operator
evals – (K,) array of the K corresponding eigenvalues
energy_list – (num_E,) values of e to use
sigma – (float) [positive] standard deviation to use
scaled – (bool) Whether to scale each energy level
- Returns:
WKS – (N,num_E) array where each column is the WKS for a given e
- Return type:
np.ndarray
- pyFM.signatures.WKS_functions.lm_WKS(evals, evects, landmarks, energy_list, sigma, scaled=False)¶
Returns the Wave Kernel Signature for some landmarks and energy values.
- Parameters:
evects – (N,K) array with the K eigenvectors of the Laplace Beltrami operator
evals – (K,) array of the K corresponding eigenvalues
landmarks – (p,) indices of landmarks to compute
energy_list – (num_E,) values of e to use
sigma (int) – standard deviation
- Returns:
landmarks_WKS – (N,num_E*p) array where each column is the WKS for a given e for some landmark
- Return type:
np.ndarray
- pyFM.signatures.WKS_functions.auto_WKS(evals, evects, num_E, landmarks=None, scaled=True)¶
Compute WKS with an automatic choice of scale and energy
- Parameters:
evals – (K,) array of K eigenvalues
evects – (N,K) array with K eigenvectors
landmarks – (p,) If not None, indices of landmarks to compute.
num_E – (int) number values of e to use
- Returns:
WKS or lm_WKS –
- (N,num_E) or (N,p*num_E) array where each column is the WKS for a given e
and possibly for some landmarks
- Return type:
np.ndarray
- pyFM.signatures.WKS_functions.mesh_WKS(mesh, num_E, landmarks=None, k=None)¶
Compute the Wave Kernel Signature for a mesh
- Parameters:
mesh (TriMesh) – mesh on which to compute the XKS
num_T (int) – number of time values to use
landmarks (np.ndarray, optional) – (p,) indices of landmarks to use
k (int, optional) – number of eigenvalues to use
- Returns:
WKS – (N,num_T) array where each line is the HKS for a given t
- Return type:
np.ndarray